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Analysis of energy cascade models of turbulence
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The exponentr,, that describes the scaling of the orgemoment of the energy dissipation field in fully
developed turbulence is studied in a range which extends to negative valpeStwé curver, vs p and its
derivative 7-;) are estimated in various ways, including a two-scale method. Predictions of recent cascade
models agree with our findings, within the statistical errors, for moderately large, pgsitisedent discrep-
ancies already appear, however, in the integval[ 0,1], and sometimes become dramatic forx0. In the
discussion of a class of cascade models, we present a scaling law which relates different moments to one
another[S1063-651X%99)04706-9

PACS numbd(s): 47.27.Gs, 02.56:r, 05.40—-a

[. INTRODUCTION so that the fluctuations of the velocity field are linked with
those of the dissipation fieldrefined similarity or K62
One of the most challenging aspects of fully developedheory. By defining energy dissipation exponenisvia the
turbulence is the so-called “intermittency,” a little- moments
understood mechanism which is responsible for the anoma- , .
lous scaling of local fluctuating observables. This phenom- Mp(/)=(eP(/))~my/ " (1.9
enon is usually exemplified by the statistics of the L T
longitudinal  velocity  difference d(/)=[v(x+7,t) (m, being/” independent this link is expressed by
—-v(x,t)]-71/, wherev(x,t) is the velocity field of the —p/3+ 1
fluid at the space-time poini(t) and/ is a displacement Lp= P13+ T @9
vector of length”. The moments;(~) of the distribution of  The exponents;,, when plotted versup, deviate consider-

d(7), defined as ably from zero, especially for larghp|. Indeed, the K62
model for the energy fluctuatiori8,4] [based on a lognor-
Sy(/)=(dP(/))~s,/ %, (1.1)  mality assumption for the variable(/)] yields
7= — 1,p(1-p)/2. (1.6)

present a remarkable power-law behavioriwith universal
exponents, which, however, do not depend linearly on The exponentr,~—0.18, often denoted withe, has been
p (s, being an/-independent prefactprThis behavior is  estimated in various ways from experimental d@#,6].
expected in an interval/,in,/ may Of 7 values(called the While Eq. (1.6) provides a good fit to the data for<Op
“inertial range,” or IR), the lower extremum of which is <2, the parabolic falloff of the curve fqu>2 is too steep.
usually identified with the Kolmogorov length and marks the Moreover, the regiorpp<0 has not been studied so far on
beginning of the dissipative range; the upper one delimitexperimental data. The main reason is presumably that mo-
large-scale motion at which no turbulence has yet setin. mentsS,(~) with negativep (actually, with anyp ¢ N) can-

Not only is the nonlinearity of, in contrast with Kol-  not be computed for the velocity field, since the velocity
mogorov's first predictiod 1] £,=p/3 (also known as K41 differences take on both signs, amg has often been seen
theory): the existence itself of an inertial range is often ques-mainly as a correction to the velocity scaling exponefys

tionable, expecially for large [2]. [7].
The only known result about the exponetits apart from On the other hand, it has been long recognized that
the obvious equality;=0, is the relatior{1] constitutes a field in its own right, with peculiar fluctuation
properties, the nature of which is, in principle, distinct from
(d3(/))y~/{e()), (1.2  that of the velocity fluctuations. In faatl(/) is an inertial-

range quantity, whiles(/) is a dissipation-range gquantity

wheree (/) is the energy dissipation averaged over a volume[s’g]’ since its definition

element of size, which implies;=1, since the average 2p

((/)) is nearly scale invariant. The scaling la&.2) has e(/)= Ef > Si(0S;i(x) dV (1.7

been later conjectured,4] to hold more generally as B
involves gradients of the velocity through the symmetric part

(dP(2))~/PR(ePR(/)), (1.3 S;=(dvi/dx;+dv;l3x;)I2 of the strain rate tensdwhere
the average is made over a domBis B(x; /), centered ax
and having volumeB|~ /3, and v is the kinematic viscos-
* URL:http://iwww1.psi.ch badii ity].
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Because of its non-negative character, the quantity 0
/3e(/) can be assimilated to the probabiliB(/) to ob- X
serve a point in a volume elemeBix;/) centered aix. _—
Following this interpretation and postulating simple mecha-
nisms for the repartition of the probability over subelements
of eachB(x;/), several so-called “cascade models” have
been elaborate@see[10—-12 for a review. MomentsM, of ¥
all orders have been computed for thdields generated in A
this way, and the function, has been seen as the counter- o
part of the generalized dimensiddy, [13] which is often
employed to characterize probability measures.

To our knowledge, however, analysis of experimental
time series has been restricted to positive valuep ofly
[10,12,14. This often resulted in incomplete testing of the -3 _"'4 _'2 (') é AI, é'
cascade models proposed so far. For example, a recent con- p
jecture[15] applies a linearity assumption fay, in the limit FIG. 1. Estimates of the exponent, obtained from various
p—+c, to a relation among momentdl (/) of orders  experimental data setsymbols joined with segments to aid the
p, p+1, andp+2. While improving over the lognormal eye, compared with the curves, vs p predicted from Eq(1.6)
prediction forp>2, it turns out to be inaccurate in the inter- (dotted, Eq. (5.5 (dashegl and Eq.(5.6) (dashed-dotted

val Osp=<1 and even dramatically diverging from the ob- o o _
served behavior fop— —, as we shall illustrate below. A The stegk appearing in the velocity difference in E@.1)

modification of it[16] presents the same drawback. Othercontrols the evaluation of the gradient and must be adjusted

models[11,17-19 yield a functionr, which is not defined in dependence ont. Instead of &th-neighbor differencing

for p<po=0. In spite of the different physical mechanisms Scheme, other approximations may be uged., a parabolic

postulated in the derivation of the models, mgsturves are  fit over k consecutive points followed by an analytical de-

indeed close to the measurementsior 1. Investigation of ~ fivative of the fitting curveg10]). While elaborated smooth-

the regionp<1, however, reveals clear differences. ing techniques do not improve the results substantially, an
In this paper, we present estimates fgrand its deriva- appropriate choice df is essential, especially for lardp|.

tive with respect top, 7, based on Eq(1.4 and on a Too small values ok privilege instrumental and discretiza-
) p1 -

two-scale method, respectively, and give evidence for a relion noise, which unavoidably affect the signal, and short-

lation between moments of ordgpsandq which introduces wavelength fluctuations which have little to share with tur-
a new exponenir,,. We compare our findings with the bulence; too large values & make the estimate of the

predictions of various cascade models in the broadest ranggadient unreliable since locality is lost and the signal may

of p values that can be investigated with sufficient statisticafV€" undergo a few oscillations within that interval. We have
setke[3,6] for the analysis of data sampled at 3 kHz, al-

reliability: this varies from ¢ 3,4) to (—6,9), depending on : X
the expgnent under considiratilq(( ;' 3r w l; g though values up to 12 have been considered for testing pur-
p pa/
The analysis is made on several experimental time serie%o‘?l_is' timated val f th ted i
of different origin:; they all refer to atmospheric turbulence _. eles |g1z;e va u?ls ort eTeﬁﬁonlen_lg_iaref_repor € ffm
with Taylor-Reynolds number around 10000, except on ccl)ni'pari:(?n wilchat?\ewfurvaesﬁjl\r;er;ss gi.ven %y'?hugelggﬁofr a
hich inal i li ith )
which was recorded in a laboratory experiment dealing wit nal model Eq. (1.6)] and by the approaches of Ref85,16

)
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jet of dry air in air[20].
a jet of dry air in air 20] [see, later, Eq95.5] and (5.6)].
Deviations from Eq(1.4) and dependence dofor larger
Il. DIRECT ESTIMATES OF 7 |p| are to be expected, although they have received little or
Given a scalar velocity time seri&éé={vq,v,, ... U}, . . : :

measured by sampling the values of a velocity component in
a turbulent fluid at a fixed positior and timest;=iAt (i
=1,2,...n), the overall energy dissipatioB;(/) in the
interval Lj=[i+ 1,4+ /7] is usually computed g1]

i+/
Ei</>=j:i2+1<vi+k—v,->2, (2.2)

by neglecting a prefactor which depends on the viscosijty
on the sampling time\t, and on the incremert The aver-
age energy dissipation in; is then

ei(/)=Ei(N17, (2.2)

where the division by’ (rather than by”®) descends from FIG. 2. Same estimates of, as in Fig. 1, shown in a smaller
the one-dimensional character of the time series. range ofp values.
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TABLE I. Most reliable estimate of the exponents obtained
from various experimental time series using Et1.4). The error
bars are reported in Fig. 1.

p Tp
—4 —-1.52
-3.5 —-1.30
-3 —-1.05
—-25 —0.80
-2 —0.55
—-15 —-0.35
-1 —-0.20
—-05 —0.079
-0.25 —0.033

0 0

1/6 0.015
1/3 0.0235
0.5 0.025
2/3 0.0225
5/6 0.014

1 0

1.25 —0.030

1.5 —0.069

2 —-0.18

25 -0.34

3 —0.55

35 —-0.77

4 —1.02

5 —1.55

6 —-2.12

7 —-2.70
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FIG. 4. Same as in Fig. 3 fop=0.5 andk=2 (solid), 6
(dashed, 10 (dashed-dotteg and 12(dotted.

for a marked curvature for smatl, the corresponding curves
are not far from those obtained with more appropriatal-
ues. The uncertainty increases for increasing Figs. 3 and
5 show this tendencyagain, a few too largé& values have
been used for illustrative purpogesvhich is more relevant
for negativep.

The error bars in Figs. 1 and 2 have been drawn from the
analysis of several data sets, using various valuds ahd
computing the slopes in the doubly logarithmic curves in
different positions. The oscillations in the energy dissipation
momenty1.4) as a function o/, appearing fop<—1, are
a sign of “lacunarity” [22]: the quantityE;(<), Eqg. (2.2),
grows nearly stepwise with (see Fig. &, with steps varying
in a wide range. In exactly self-affine signals, this yields
prefactors to the power laws which consist of periodic func-
tions of Inv” [23,24. A similar phenomenon can occur in
certain sets of random poin&1]. The two main slopes that

no attention in the literature. Figures 3-5 illustrate threecan be seen in Fig. 5 fgg=4 might also reflect lacunarity,

typical situations. The results are nearly independenk, of
and the power law(1.4) is well verified, as long ape
[ —0.5,2]: notice that the valuek=10 and 12 used in Fig. 4

the periodicity of which, however, largely exceeds the iner-
tial range: the latter, therefore, is poorly defined for 1.
Fork< —3, instead, two oscillation periods are recognizable.

are too large for a gradient evaluation. Nevertheless, excefthe initial slope has been chosen for the estimates,of

n{eP(1)) o

-0.6

-1.2

1

0.5

0 nt

FIG. 3. Energy dissipation moment of order= —3 as a func-
tion of the interval length’, for various gradient-evaluation stekis
from top to bottomk=2 (solid), 3 (dasheg, 4 (dashed-dottedand

6 (dotted. Logarithmic scales and arbitrary units have been used:

the length/” varies between 60 and 58&tmospheric data, sampled
at 3 kH2.

both its spread and the second slope contribute to the error
bars.

While a comparison between estimatggdand model pre-
dictions will be made in the next section, we remark here
that the K62 theory1.6) is quite accurate fop<2, as seen

n(eP(1))

N
~
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I
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FIG. 5. Same as in Fig. 4 fquy=4.
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site direction and it is not easy to disentangle their contribu-
tions. The slight upwards bending of thg curve in Fig. 1
for p<—3 might be attributed to noise.

E(t)

IIl. CASCADE MODELS

The nature of the fluctuations of the energy dissipation
field and, consequently, the shape of the curyeare, to a
large extent, still unexplained. Several modgl9—-12,15—
o 19,25-27, based on quite different assumptions about the
| , 0 200 400, physical mechanisms of turbulence, have been proposed
0 1000 2000 ¢ 3000 since the refined similarity theoy8,4]. While a complete
) L , review of cascade models lies beyond the scope of the
FIG. 6. Typical plot of the energy dissipation réfi¢/), Eq. present article, we select a few of them for comparison with

(2.1), integrated over an interval of length as a function of”. A - T .
stepk=5 was used for the evaluation of the gradients. The inletOur results. Before doing this, it is useful to consider what

shows an enlargement of the first portion of the main cyatmo- can be said priori aboutry . o
spheric data sampled at 3 kHz (1) Clearly, 7g=7,=0. The former equality is true by
definition; the latter can be verified by writing

in Figs. 1 and 2, except for the two leftmost poin{s=( N

—3.5 andp=—4). Although these might mark the onset of 1 ,
an asymptotic linear behavior, their high values are in part (e()={ 21 &i(/)=
connected with the difficulty of the data analysis for

—1:in that limit, in fact,M ,(~") approachegmin{ei(/)}1°.  where N is the length of the time serieninus k) and
Clearly, the estimation of the minimum requires an amouny (k)=v ., ,—v:, and reordering the sums as

of data of sufficient size to allow exploration of the smooth- : : .

1 i+/
- 2
2,7 2 4k,

i=1

Z| -

est regions of the flow and a careful filtering of very short- 1 L 1N
wavelength fluctuations. Indeed, the minima of the energy (s(/)>:N—/ E Z de(k)_
fluctuations could sometimes be identified only after 6 i=lj=isl

X 10° energy values had been analyzed. As to the latter . ) . . .
point, larger values ok do free the gradients from random ASSuming the stationarity of the velocity differenceégk),

fluctuations and yield steeper log-log pldie., more nega- the second sum converges m?_(d?(k))' which is indepen-
tive 7,). This, however, comes at the price of increased ladent of 7 hence,(e(~)) itself is independent of and 7,
cunarity effects and nonlocality of the gradient evaluations. =0 . . ) )
To remedy this, at least in part, we have employed an alter- (2_) Furthermore, inspection of the experimental data im-
native gradient estimation method. We first computed thénediately reveals that,#0, becaus&;(/) [Eq.(2.1] gen-

maximum erally does not increase linearly ifi but rather resembles a
devil's staircase, as shown in Fig. 6.
ngo)zmax{wﬁk_v”, k=1,2, ... Ko} 2.3 (3) The asymptotic behavior af, for |p| = is Iinear‘ in
p. In fact, for p— -+ (—x), (eP(/))

of the velocity increments in absolute value over each inter—&h.{#) [ehi(#)]. Since the bases of these exponentials

val [j+1,j+ko], for a fixedk, (chosen between 3 and 10 are independent gf, Eq. (1.4) implies thatr,~c..p for p

and then divided it by the valule,, of k at which the maxi- — .

mum is attained. The result has been squared and summed (4) Bounds for7, have been deducdd7] under the hy-

over/ steps as in Eq2.1). In this way, the effective, nearly pothesis that

noise-free dynamics of the flow is extracted. While a certain

dependence ok still persists, this is much weaker than the (le(rN1e(/)]P)~r17p, 3.1

dependence of the conventional difference schemk &or

instance, the log-log curvels! (/) vs /* produced by the where the energy dissipations in the ratio are computed over

two methods forp=—3 are comparable witky=6 andk nested intervals of lengths” and/” (0<r<1). Notice that

=4, and withky=9 andk=6. three assumptions are implied here: namely, that the scaling
Finally, we have tested the effect of the discretization ofbehavior is a pure power law in that the exponent, is the

the data on the estimates. Lower precision generally does nesaime as in Eq1.4), and that this holds independently of any

affect exponents witlp>1 noticeably. Fop<—1, instead, shift of the inner interval relative to the outer one. Then,

it leads to smaller values af,. This result, which has been —1<7,<0, 75— 7,=—h for h=0, and 7,=7,+2—p

verified on several data sets by reducing the precision by gor p=2. None of these inequalities is critical: i.e., they are

factor up to 8, is to be expected, since low resolutionall widely satisfied.

smoothens the data thus flattening them in the vicinity of the (5) Under the same hypothesis, Novikov has shd@8|

minima of the gradients. Large gradients, selectegpbyl,  thatr,/p——1, in the limit p— + o, if the probability dis-

are obviously less affected, since the dynamical range of thgibution W(q, ,) of the so-called “breakdown coefficients”

signal is sufficiently high in their neighborhood. Therefore,q, ,=¢(r/)/e(/) has no gap, as appears to be the case

measurement noise and discretization errors act in the oppérom the experiments.
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As expected from the simplicity of the assumption sup-
porting it, the lognormal mode(1.6) cannot be correct
[17,29: indeed, it does not fulfill condition&3)—(5). Never-
theless, it is surprisingly accurate in the interpat (— 2,3),

as seen in Figs. 1 and 2. The quadratic decrease predicted for

7, at large|p| is the major source of discrepancy with the
experimental values.

In order to overcome the drawbacks of this model, several

alternatives have been proposed. Among the most rece
ones, we mention those of Refd5], [16], which we study
in the next sections, and of Ref®8], [18], which are only
applicable forp larger than som@,, referring the reader to
[10,12,3Q for older models.

The several expressions proposed fgrarise from quite

disparate physical motivations: a first group has its roots in

self-similar constructions of fractal probability measures
[22,25,31-34 a second one in assumptions about the shap
of the distributionW(q, ,) of the breakdown coefficients
[11,19,27,28 a third combines assumptions about the
asymptotic behavior ofr, for p— + with scaling laws
which relate moment$1, [Eq. (1.4)] of different ordersp
with one anothef15,1¢, rather thanM, with the length
scale/.

In Ref.[15], She and Leeque(SL) have conjectured that
limp_ 4 ..7/p=—2/3; Novikov [28] has questioned this
value, suggesting replacing it with 1 [see point5) abovd.
This proposal has been received by Chen and @9 in
Ref. [16] and incorporated in the scheme of REf5]. The
two curvesTy Vs p corresponding to these choicé® be
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FIG. 7. Two-scale differencé ,(r) of the moment derivatives
f orderp= —2 versus In computed from atmospheric data, using
=3, 5, and 7 from top to bottorfi.e., solid, dashed, and dashed-
dotted line, respectively

IV. TWO-SCALE ESTIMATES OF 7,

The derivativerl’)=drp/dp can be directly estimated by
comparing expectations of suitable observables referring to
two different length scales. Followind], we consider two
time intervals having the origin in common and lengths
and/’ =r/. Setting

Lp(#)=In(eP(/)) (4.2)

discussed in Sec. Vare also plotted in Figs. 1 and 2: the and recalling Eq(1.4), the derivative oL, with respect tqp
value 7= —0.18 has been used. They agree quite well withcgn be written as

the experimental results fgg>2, with a slight preference
for SL for p>5 and a clear superiority of CC for 0.5<p
<5 (SL being inaccurate already fpr<2).

The better performance of SL for largedoes not imply,
however, that the-2/3 assumption for the limit slope is
correct: in fact, we have chosen not to consider values of
above 7 because of the unreliability of the estimates, no
withstanding the high quality of the data. Simply, the
asymptotic regime might set in for still high@t so that it

Lp(/)=(ePIne)(eP)~my/m,+75In/, (4.2

wherem’ dm/dp is the derivative of the prefactor in Eq.
(1.9). ComputlngL across the two time intervals permits

tertlng the dlfference as

Ap(N=LY/ ) =LY )~7hInr, 4.3

would not be visible from these plots. On the other hand, the

value —1 for the slope at-o might also be incorrect, de-
spite the apparently convincing argumentation of R28]:
indeed, although the distributiof¥(q, ) exhibits no notice-

where the prefactors disappear because of the common origin
of the intervals. Notice, however, that no deviation of rela-
tion (1.4) from a pure power lawe.g., a logarithmic depen-

able gap, the scaling exponent of the breakdown coefficientdence ory”) is assumed here.

[see Eq(3.1)] need not equat, exactly.

While our results cannot resolve the questionrgé limit
for p— + o0, they definitely show the inadequacy of both SL
and CC for negativep (not to mention other models which
are not defined below some,<0). If the lognormal ap-
proach yields too steep a descdnuadratic inp), these
models predict an even steeper d@xponentigl Our re-
sults, although not extending belgw= — 4 and affected by
a slight upward bend of the, curve, point to a linear de-
crease ofr, for p— —o, in agreement with our conjecture
(3) above.

Two typical sets of curved ,(r) vs Inr are displayed in
Figs. 7 and 8, forp=—2 and 3, respectively. Deviations
from linearity and dependence on stefor the evaluation of
the gradients are evident, especially fo=—2. The error
bars in Fig. 9, which shows the estimated cumevs p,
account for this. For smalldp|, such effects are negligible
and the estimates are extremely accurate and consistent
throughout several data sets.

Comparison with the expression mg given by the log-
normal formula(1.6) and by the SL and CC approximations
[Egs. (5.5 and (5.6), respectively shows that the latter be-

Something is substantially wrong in the approacheshaves like an improvement over a linear flognorma)

[15,16 for p<0. Before analyzing them, we present the re-

which extends the accuracy from the interyal2] to the

sults of an independent method for the evaluation of thdénterval[ —2,4]. The SL formula, instead, fails to fit the data

derivativer{) of 7, with respect tq, since this is related to

the SL-CC scheme.

in the whole displayed range. This is particularly striking in
the interval[0,1] (see also Fig. R especially if compared
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in a broader range than E€lL.4) and present smaller devia-
tions from the proposed behavior, so as to facilitate defining
an “inertial range.”

When working with velocity differences, this is usually
identified with an interval { min,/ may Of length scales in
which the pure power lawl.l) is well verified. In particular,
it is customary to refer to the cage=3, although the ex-
trema/ nin and / max depend orp. This procedure, unfortu-
nately, is only successful at high Reynolds numbsom-
monly denoted byR=V/./v, where V is a typical
velocity at the “integral” scale/ 50 : in Ref.[35], for ex-
ample, only forR>47 000 could a power law be detected in
some range fop=2, 3, and 6. For'</,,, the moments

-2 -1 Inr O exhibit a different behavior, not necessarily of a power-law
N type.
FIG. 8. Same as in Fig. 7 fgr=3. A further difficulty arises with the so-called “odd mo-

ments,” i.e., moments; having an odd value of the expo-
with the agreement for larggrvalues. Moreover, neither SL nentp: the sign fluctuations of the velocity differences often
nor CC are able to reproduce the experiment for smalinake the estimate af, quite unreliable. In order to reduce
p (p<0 andp<-—2, respectively. the “invasion” of the dissipation range and overcome the
It should be noted that the valuesjf estimated with this  odd-moment problem, the scaling relation
method forp<—1 are definitely larger than those obtained
by numerically differentiating the curve, vs p obtained

from Eq. (1.4) and displayed in Figs. 1 and 2. Despite the (|dP)~wy(d(A)[) P (5.9
large error bars, a bending toward a constant value, as con- ,‘
jectured in Sec. lIl, is already apparent for —2. No pre- IS often used, wherev, does not depend ori. The length

cise value can be identified, however. It has not been posicale/’, which was the independent variable in Ef.1), is
sible to push these estimates reliably to the righipef4  replaced by the third momeg of the velocity differences
because of the emergence of a second slope in the plots G absolute valugby analogy with Eq(1.2). This substitu-
Ap(r) vs Inr. tion, called “extended self-similarity’(ESS, was proposed

It must be remarked that the value &fis an additional in Ref.[35] with the same exponer, as in Eq.(1.1): actu-
free parameter which could be varied to improve the qualityally, the ESS exponertfy is not necessarily the same gs
of the results. No systematic investigation has been made 4@]. The ESS is an example of a “relative” scaling law: i.e.,
far: for the atmospheric data sampled at 3 kHz, we have useiimay be used to infer the value of an exponent starting from
/'=600. a given one {3 in this casg

The SL and CC models borrow this idea and apply it to

the energy dissipation momentk.4). In Ref.[15], the ratio
V. BEYOND THE INERTIAL RANGE

The inability of the SL and CC approximatiofs.5 and M, 1(2)
(5.6) to reproduce the experimental results for negaftive Rp+1(/)= W (5.2
requires a careful investigation of their derivation. These P~
models stem from the wish to obtain scaling laws which holdiS assumed to depend on its “predecessarp;(/) as

1

. Ry 1(/)~AC(/IRE(), (5.3
P
with B8 a constant, independent pf The prefactor consists
0.5 of two parts. The formerA, is a function ofp only. The
latter, C(/), was written aR: ™ #(/), where
0 R..(/)=lim R,(/)
p~>oc
accounted for the “most intermittent structures” of the fluid.
05 I Dimensional arguments, tied to the supposed filamentary na-
s ture of these structures, led to the assumpfit
FIG. 9. Derivativer), of 7, versusp, compared with the predic- R.(/)~/"2B, (5.9

tions of Eg. (1.6) (dotted, Eq. (5.5 (dashed, and Eq. (5.6
(dashed-dotted which implies the SL formula
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2 2\P 3 T .
SL=_Zp4+ Y i
S 3P 2/1 (3 , (5.5 6, |
2 |
in the derivation of whichry and 7; were set to 0. The only !
difference in the CC approach is its acceptance of Novikov’'s
criticism [28], which demands replacing the value 2/3 in Eq. LR 5% S .
(5.4) with 1: the corresponding formula reads !iig ;
0 k1
7= —p+[(1+7)P—1]/7,. (5.6 Ei
A few remarks are in order. First, the disagreementgdor -1 F ? .
<0 should not come as a surprise, since the above expres- ﬁi
sions were deduced by “fixing” the scaling with an assump- . | 4 | . |
tion at p— +o° only, ignoring the range<0; moreover, -2 -6 -3 0 ' 3 6 p 9

dimensional arguments were invoked, analogously to Kol-

mogorov’s 1941 approacfi], which fails to describe the FIG. 10. Scaling exponer, of Eq. (5.7) versusp, compared
deviations of the exponents from linearity. Secondly, the lawwith its analytic expression as given by Hd.6) (dotted and Eq.
(5.3 is arbitrarily restricted to integer values pf in fact, (5.5 (dashedl

sincee is non-negative, one could consider moments of or-

dersp—h, p, andp+h, with p andh e R. This would make Two typical plots ofR;,, ; VSR, are shown in Fig. 11: the

it clear that the SL-CC scheme is basically an assumptiogcaling law(5.7) holds, except for some oscillations for

about 7, for p— +o(7,,,— 7, goes over tor, in such a <-—1. Using Eq.(5.3 with Eq. (5.4) usually yields a curva-

limit). As seen in the preceding sectiar@, can be estimated ture which makes a linear fitn a doubly logarithmic scaje

directly and the results agree much better with the CC forhard.

mula than with SL's, in the chosgmrange. Finally, we have investigated a simpler scaling law in-
The third and most important point is that relati@3) is  volving the orderp momentM , of Eg. (1.4), namely,

not well satisfied as long as thédependent prefactd(/)

is included, no matter which value is tak&13 or 1) for the

scaling exponent in Eq5.4). Indeed, the influence of the

scaling exponent gp= + should be stronger for large

and weaker for smalp, whereas fixed contributions are as-

sumed in Eq(5.3. We have verified this for several values

of p and data sets. A better scaling is obtained by pIottingg

Rp+1 versusR,, without any/-dependent correction. As a

consequence, relatiofd.3) must be rewritten as

Mp(#)~M 2P/, (5.9

which we have verified in the casg=p— 1, for comparison
with Eq. (5.7), although this relation holds much more gen-
rally. The estimated values of,,, with q=p—1, are re-
orted in Fig. 12, together with the expressions obtained
from Egs.(1.6) and(5.5): in fact, it is easy to see that

Rp+1(/)~RP(/), (5.7 ¥p+1p= s/ Tp- (5.10

where the exponeng, is explicitly a function ofp. This is Two curves illustrating Eq(5.9) are shown jn Fig. 13. The
quite obvious since, for example, relatith7) reduces to an  S@Mme remarks apply as those made previously for Figs. 10
identity in the limit p—o, where the increment 1 is negli- and 11, except that the new scaling 1489 is satisfied

gible with respect t and 3,—1". The same observation

can be immediately made by takimy, ., instead ofR,, 4, 03 - .
with 0<h<1. Using Eq.(1.4), it is readily seen that ‘i
a3
— £
Tp+1 Tp ~
= 5.8 L i
L (5.8 0

The values of3,, estimated from our data are plotted in Fig.
10, together with the curveg, vs p that are obtained by
substituting Eqs(1.6) and(5.5) into Eq. (5.8). As expected, -0.3 .
the experimental data are better reproduced by the SL for-
mula for p>0 and by the lognormal prediction fgr<0.

The limits for |p|— converge quite neatly to 1, as pre-

dicted [a good fit is given byB,~0.75/(p—1)+1]. The -0.3 0 InR 03
vertical asymptote ap=1 comes from the SL choice of P
taking an increment of 1 ip in Eq. (5.3, which we have FIG. 11. RatioR,.; versusR,, Eg. (5.2, in a log-log plot,

respected in Eq(5.7). As already remarked, there is no spe- computed from atmospheric data for- —3 (upper curve, triagles
cial reason for doing so: any real incremdntis equally andp=4 (lower curve, squargésThe curves have been shifted to
legitimate. avoid overlapping.
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FIG. 12. Scaling exponent,,  , of Eq. (5.10 versusp, com- FIG. 13. Doubly logarithmic plot of momen,,; versus mo-
pared with its analytic expression as given by Eig6) (dotted and ~ mentM,, illustrating Eq.(5.7), computed from atmospheric data
Eg. (5.5 (dashedl for p=—3 (upper curve, trianglgsand p=4 (lower curve,
squares
much more accurately than E(ﬁ.?)_ or Eqg. (5.3: the_ esti- VI. CONCLUSIONS
mated values ok are, correspondingly, more precise than )
those of3,, . We have studied the moments of the locally averaged

The power law(5.9) holds extremely well in a broad €nergy dissipation from experimental turbulent signals in a
range of/ values, even around the extrema where a definitéange of exponents that includes positive and negative val-
bending is exhibited by the momeni,(/) vs 7, Eq.(1.4),  UeS. Th¢ results have been examined upon vgriation of vari-
for |p|>3. Therefore, it is tempting to use the values, ous estlma'tlon parameters :':md' comparec_i with a two-scale
to extrapolate values af, from a known one, in the spirit of method which yields the derivative of the intermittency ex-

the extended self-similarity approa¢B5] [see Eq.(5.1)].  Ponent. Deficiencies of currently popular cascade models
For instance, one could write have been pointed out and some of the reasons for their

partial failure have been analyzed. In this discussion, we
have presented a simple scaling law which is quite well sat-
isfied and may be used to improve the quality of the esti-
or an analogous relation using, , p,, with h<1. Although mates of the_ intermitten_cy exponents. Further_ investigation
this may indeed be useful for moderate valuepahe ten- ©On the gradient-evaluation methods, on Novikov's break-
dency ofa,, 1, to 1 for large|p| makes the progress per down coefficients, and on the new scaling law is in progress.
iteration step smaller and smaller, to a point at which the
cumulative estimation errors on tlaés in the product domi-
nate over the value of, thus obtained. Scaling relations of
the types(5.3), (5.7), and(5.9), however, are worth further We gratefully acknowledge receiving data from M.

Tp= T232043 " " &p p—1»
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